Using Semi-supervised Learning for Question Classification
نویسندگان
چکیده
منابع مشابه
A semi-supervised approach to question classification
This paper presents a machine learning approach to question classification. We have defined a kernel function based on latent semantic information acquired from unlabeled data. This kernel allows including external semantic knowledge into the supervised learning process. We have combined this knowledge with a bag-of-words approach by means of composite kernels to obtain state-of-the-art results...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملSemi-Supervised Learning for Blog Classification
Blog classification (e.g., identifying bloggers’ gender or age) is one of the most interesting current problems in blog analysis. Although this problem is usually solved by applying supervised learning techniques, the large labeled dataset required for training is not always available. In contrast, unlabeled blogs can easily be collected from the web. Therefore, a semi-supervised learning metho...
متن کاملSemi-supervised learning for image classification
Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10, 000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling proce...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Natural Language Processing
سال: 2008
ISSN: 1340-7619,2185-8314
DOI: 10.5715/jnlp.15.3